Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Article in English | MEDLINE | ID: covidwho-2300905

ABSTRACT

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Subject(s)
COVID-19 , Hematologic Neoplasms , Humans , Receptors, Antigen, T-Cell, alpha-beta , COVID-19 Vaccines , SARS-CoV-2 , BNT162 Vaccine , CD8-Positive T-Lymphocytes
2.
Immunol Cell Biol ; 101(6): 504-513, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2252854

ABSTRACT

The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.


Subject(s)
COVID-19 , T-Lymphocytes, Helper-Inducer , Humans , Adult , COVID-19 Vaccines , SARS-CoV-2 , T Follicular Helper Cells , COVID-19/prevention & control , Vaccination
3.
Immunology ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2246810

ABSTRACT

Given increased acceptance of the CoronaVac, there is an unmet need to assess the safety and immunogenic changes of CoronaVac in patients with rheumatic diseases (RD). Here we comprehensively analysed humoral and cellular responses in patient with RD after a three-dose immunization regimen of CoronaVac. RD patients with stable condition and/or low disease activity (n = 40) or healthy controls (n = 40) were assigned in a 1:1 ratio to receive CoronaVac (Sinovac). The prevalence of anti-receptor binding domain (RBD) antibodies and neutralizing antibodies was similar between healthy control (HC) and RD patients after the second and the third vaccination. However, the titers of anti-RBD IgG and neutralizing antibodies were significantly lower in RD patients compared to HCs (p < 0.05), which was associated with an impaired T follicular helper (Tfh) cell response. Among RD patients, those who generated an antibody response displayed a significantly higher Tfh cells compared to those who failed after the first and the second vaccination (p < 0.05). Interestingly, subjects with a negative serological response displayed a similar Tfh memory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides as their anti-RBD IgG positive counterpart, and all (4/4) of the non-responders in HCs, and 62.5% (5/8) of the non-responders in patients with RD displayed a positive serological response following the third dose. No serious adverse events were observed. In conclusion, our findings support SARS-CoV-2 vaccination in patients with RD with stable and/or low disease activity. The impaired ability in generating vaccine-specific antibodies in patients with RD was associated with a reduction in Tfh cells induction. The window of vaccination times still needs to be explored in future studies. Clinical trial registration: This trial was registered with ChiCTR2100049138.

4.
Pediatrics ; 150, 2022.
Article in English | ProQuest Central | ID: covidwho-2162658

ABSTRACT

PURPOSE OF THE STUDY: T cell lymphopenia is prevalent in severe coronavirus disease 2019 (COVID-19). This study evaluated associations with homeostatic and functional T cell responses in COVID-19 with the goal of identifying immunologic features of severe disease. STUDY POPULATION: Patients aged 18 years and older with symptomatic, real time-quantitative polymerase chain reaction confirmed SARS-CoV-2 (mild, n = 54;severe, n = 49) were recruited at 4 hospitals in the Canton of Zurich, Switzerland from April 2 to August 19, 2020, and a group of healthy controls recruited for comparison (n = 27). A subset (mild, n = 28;severe, n = 38, healthy, n = 22) had comprehensive T cell characterization. METHODS: In this prospective, observational, cross-sectional study, symptomatic participants with mild and severe COVID-19 and healthy controls were sampled at a single time point. Phenotypic and functional characteristics of T cells were evaluated using 40-parameter mass cytometry, flow cytometry, targeted proteomics, and functional assays. RESULTS: Compared with mild disease, severe COVID-19 was associated with T cell lymphopenia and redistribution of T cell populations, including loss of naïve and memory CD4+ and CD8+ T cells, skewing toward CD4+ T follicular helper cells and cytotoxic CD4+ T cells, and expansion of activated and exhausted T cells. Individuals with severe disease and T cell lymphopenia had signs of tissue migration, extensive T cell apoptosis, and impaired T cell responses to common viral antigens. Patients with severe disease also showed elevated interleukin-7 and increased T cell proliferation. Those sampled longest after symptom onset had higher T cell counts and improved antiviral T cell responses. CONCLUSIONS: Severe COVID-19 is characterized by extensive T cell dysfunction. Reduced naïve T cells and virus-specific memory T cell numbers are associated with severe disease and impaired T cell responses to viral antigens, particularly early in the disease. Increased T follicular helper cells may contribute to a robust antibody response often observed in COVID-19. T cell apoptosis is associated with lymphopenia and homeostatic T cell proliferation and T cell recovery in the later stages of disease.

5.
Clin Lab Med ; 42(1): 75-84, 2022 03.
Article in English | MEDLINE | ID: covidwho-2130421

ABSTRACT

This review describes the underlying basis for the sup-optimal humoral immune response in coronavirus disease (COVID)-19 including the absence of evidence for affinity maturation in the vast majority of patients and the absence of germinal centers even in severe disease. Suboptimal humoral and cellular immunity may provide the optimal conditions for the generation and selection of viral variants.


Subject(s)
COVID-19 , Immunity, Humoral , Antibodies, Viral , Humans , Immunity, Cellular , SARS-CoV-2
6.
Applied Sciences ; 12(16):8213, 2022.
Article in English | ProQuest Central | ID: covidwho-2023099

ABSTRACT

In particular, the bi-directional communication network, also known as the gut lung axis connecting the intestinal and pulmonary microbiota, is considered responsible for the massively increased bacterial load in the cecum after acute lung injury, causing alterations in airway microbiota and its transitory translocation into the bloodstream toward the bowel [7,8]. [...]subjects with chronic obstructive pulmonary disease often show intestinal hyper-permeability and a high prevalence of IBD [9]. Both mechanisms would underlie the association between periodontitis and inflammatory and degenerative diseases, such as atherosclerosis, Alzheimer’s disease, age-related macular degeneration [22], chronic inflammatory bowel disease [23], and solid neoplasms, such as colorectal carcinoma [24]. [...]intestinal microbes could, due to mucosal barrier impairment, translocate to the liver through the biliary tract and the portal vein, and oral dysbiosis could exacerbate chronic liver diseases, likely modulating the gut ecosystem through the oral–gut axis, on the one side, and may reflect the intestinal dysbiotic ecosystem, affected in turn by hepatic diseases, on the other side [12,25]. Furthermore, mainly the upper but also the lower airways of healthy individuals frequently harbor oral anaerobes, including Prevotella and Veillonella species, probably secondary to continuing microaspiration by contiguity. [...]detecting oral bacterial DNA in the lower airways in healthy subjects could represent the traces of aspirated oral bacteria either not eliminated through physiological clearance or living in dynamic equilibrium with host defensive responses by promoting mucosal immunity of the Th17/neutrophilic phenotype and suppressing innate immunity. Whether bacteria from the oral microbiome regulate responses to pulmonary pathogens and whether they interfere in inflammatory lung disease pathogenesis [26] is still under study. [...]a growing body of evidence highlights that gut and oral dysbioses, interconnected with the local microbial and inflammatory environment of the lung, liver, and other organs, are crucially implied in a multitude of diseases also involving distant organs.

7.
Proc Natl Acad Sci U S A ; 119(30): e2203659119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1991766

ABSTRACT

This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2-derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until ∼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.


Subject(s)
COVID-19 , Cytokines , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/immunology , Convalescence , Cytokines/blood , Humans , Interferon-gamma/blood , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology
8.
The Lancet Infectious Diseases ; 22(8):1126, 2022.
Article in English | ProQuest Central | ID: covidwho-1984275

ABSTRACT

The authors reported no adverse reactions to phage therapy, regardless of type of bacterial infection, type of phages used, or method of treatment. 11 patients displayed some measure of symptom improvement or reduced bacterial presence;four exhibited no response to treatment. T-helper cells key to malaria vaccine Scientists studying why immunity against Plasmodium falciparum lasts only a short time after immunisation found that T-helper cells reacted exclusively to the protein sequence of the vaccine strain and showed hardly any cross-reactivity with naturally occurring variants. For more on cancer drug and SARS-CoV-2 see ACS Infect Dis 2022;published online June 29. https://doi.org/10.1021/acsinfecdis.2c00008 For more on COVID-19 in pregnancy in sub-Saharan Africa see Clin Infect Dis 2022;published online June 8. https://doi.org/10.1093/cid/ciac294 For more on the spread of enteric viruses through saliva see Nature 2022;published online June 29. https://doi.org/10.1038/s41586-022-04895-8 For more on influenza vaccination and Alzheimer's disease see J Alzheimers Dis 2022;published online June 13. https://doi.org/10.3233/jad-220361 For more on extensively drug-resistant Neisseria gonorrhoeae see Euro Surveill 2022;27: 2200455 For more on bacteriophage therapy case series see Clin Infect Dis 2022;published online June 9. https://doi.org/10.1093/cid/ciac453 For more on T-helper cells and malaria vaccine see Sci Immunol 2022;7: eabm9644

9.
J Reprod Immunol ; 153: 103661, 2022 09.
Article in English | MEDLINE | ID: covidwho-1914722

ABSTRACT

T helper (Th) cell subsets play distinct and important roles during pregnancy. This work was focused on investigating the Th and cytokine profile in pregnant women recovered from COVID-19. To this aim, the frequency of Th1, Th2, Th17 subsets and the level of associated cytokines were analysed in pregnant women recovered from COVID-19 and in matched non-pregnant women. Principal component analysis highlighted a significant impact of pregnancy on Th profile with an increase of ex-Th17 subset and a parallel decrease of Th1 population. These modulations may participate in both preserving the pregnancy and reducing the risk of severe infection.


Subject(s)
COVID-19 , T-Lymphocyte Subsets , Cytokines , Female , Humans , Pregnancy , T-Lymphocytes, Helper-Inducer , Th1 Cells , Th17 Cells , Th2 Cells
10.
Asia-Pacific Journal of Molecular Biology and Biotechnology ; 29:12, 2021.
Article in English | ProQuest Central | ID: covidwho-1813113

ABSTRACT

Introduction: The devastating outbreak of SARS-CoV2 and the associated COVID-19 has had a severe impact on the global community. While recent advances in vaccination have given some hope of respite the proven ability of the virus to mutate and potentially generate vaccine resistant strains indicates that there can be no relaxation of our urgent efforts to better understand the effects of this disease. A critical part of this effort is to understand the changes to the immune system of infected patients since both viral clearance and most symptoms of the disease are mediated by the immune system. Recent advances in single cell technologies, such as mass cytometry (also known as CyTOF) have revealed high levels of heterogeneity among immune cells. Methods: Mass cytometry was used to assess the single cell proteome of millions of cells from the blood of patients with COVID-19. Results: Wide ranging changes to a variety of cell populations occur. Simultaneous assessment of changes to both common populations and such as classical monocytes, and rare sub-populations of FOXP3 expressing regulatory T-cells and Tfollicular helper cells was observed Conclusion: Simultaneous assessment of wide ranging cell populations may indicate how they interact during COVID-19 and suggest that differences between regulatory T-cell subsets among moderate, severe, and critical patient groups may be a factor in pathogenesis.

11.
Cell ; 185(6): 1008-1024.e15, 2022 03 17.
Article in English | MEDLINE | ID: covidwho-1664732

ABSTRACT

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. Herein, through a fine-needle aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant recipients (KTXs). We found that, unlike healthy subjects, KTXs presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cell, SARS-CoV-2 receptor binding domain-specific memory B cell, and neutralizing antibody responses. KTXs also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals and suggest a GC origin for certain humoral and memory B cell responses following mRNA vaccination.

12.
Rheumatol Int ; 42(3): 449-456, 2022 03.
Article in English | MEDLINE | ID: covidwho-1640824

ABSTRACT

The pathogenesis of COVID-19 involves both humoral and cellular immunological responses, with cell-mediated immunity being discussed as the primary and most effective immune response to viral infection. It is supposed that COVID-19 vaccines also elicited effective cell immune response, and specifically IFNγ secreted by SARS-CoV-2-specific T-helper 1 and Tcytotoxic cells. Using an interferon-gamma release assay (IGRA) test, we aimed to monitor cellular post-vaccination immunity in healthy subjects vaccinated with BNT162b2 mRNA COVID-19 vaccine (Comirnaty). We tested 37 healthcare workers (mean age 54.3 years, range 28-72, 22 females, 15 males) following COVID-19 mRNA COVID-19 vaccine and 15 healthy unvaccinated native persons as control subjects using QuantiFERON SARS-CoV-2 RUO test, performed approximately 1 month after vaccination. We also measured virus-neutralizing antibodies. Thirty-one out of 37 tested subjects had significantly raised levels of SARS-CoV-2 specific IFNγ against SARS-CoV-2 Ag1 and Ag2 1 month following COVID-19 vaccination. In addition, we found a significant difference between the IFNγ levels in fully vaccinated subjects and the control group (p < 0.01).We also found a substantial correlation (r = 0.9; p < 0.01) between virus-neutralizing antibodies titers and IFNγ concentrations released by T cells. We believe that IGRA tests are an excellent tool to assess the development of a post-vaccination immune response when immunized against SARS-CoV-2. However, IGRA-based tests should be performed within a few weeks following vaccination. Therefore, we can speculate that the application of these tests to assess long-term immune response is debatable.


Subject(s)
BNT162 Vaccine , COVID-19/prevention & control , Immunity, Humoral/immunology , Immunogenicity, Vaccine/immunology , T-Lymphocytes/immunology , Adult , Aged , COVID-19/immunology , Female , Humans , Interferon-gamma Release Tests , Male , Middle Aged
13.
Front Immunol ; 12: 760249, 2021.
Article in English | MEDLINE | ID: covidwho-1581341

ABSTRACT

Background: The humoral and cellular immune responses to SARS-COV-2 vaccination remain to be elucidated in hemodialysis (HD) patients and kidney transplant recipients (KTRs), considering their baseline immunosuppressed status. The aim of our study was to assess the associations of vaccine-induced antibody responses with circulating lymphocytes sub-populations and their respective patterns of alterations in maintenance HD patients and KTRs. Materials and Methods: We included 34 HD patients and 54 KTRs who received two doses of the mRNA-vaccine BNT162b2. Lymphocyte subpopulations were analyzed by flow cytometry before vaccination (T0), before the second vaccine dose (T1) and 2 weeks after the second dose (T2). The anti-SARS-CoV2 antibody response was assessed at T1 and at T2. Results: 31 HD patients (91.8%) and 16 KTRs (29.6%) became seropositive at T2. HD patients who became seropositive following the first dose displayed higher CD19+ B lymphocytes compared to their seronegative HD counterparts. A positive correlation was established between CD19+ B cells counts and antibody titers at all time-points in both groups (p < 0.001). KTRs showed higher naïve CD4+CD45RA+ T helper cells compared to HD patients at baseline and T2 whereas HD patients displayed higher memory CD45RO+ T cells compared to KTRs at T2. The naïve CD4+CD45RA to memory CD4+CD45RO+ T helper cells fraction was negatively associated with antibody production in both groups. Conclusions: Our study provides a potential conceptual framework for monitoring vaccination efficacy in HD patients and KTRs considering the correlation established between CD19+ B cells, generation of memory CD4+ T helper cells and anti SARS-CoV2 antibody response to vaccination.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , Immunity, Humoral , Immunocompromised Host , Immunologic Memory , B-Lymphocytes/metabolism , Biomarkers , CD4-Positive T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Humans , Immunophenotyping , Kidney Transplantation , Lymphocyte Count , Male , Renal Dialysis , SARS-CoV-2/immunology
14.
Methods Mol Biol ; 2380: 201-209, 2022.
Article in English | MEDLINE | ID: covidwho-1525490

ABSTRACT

Generation of effective immune protection against viral infection and vaccination depends greatly on a successful engagement and stimulation of adaptive immune B cells and a specialized CD4+ T cell subset called T follicular helper cells (TFH cells). Since TFH cells primarily reside in lymphoid tissues, they can be challenging to study in human settings. However, a counterpart of these cells, circulating TFH (cTFH) cells, can be detected in peripheral blood. Assessment of cTFH cells serves as an informative marker of humoral responses following viral infection and vaccination and can be predictive of antibody titers. Here, we describe a comprehensive flow cytometry detection method for dissecting cTFH subsets and activation, together with the assessment of antibody-secreting cells (ASCs), from a small volume of human whole blood. This approach allows the investigation of cellular events that underpin successful immune responses following influenza and SARS-CoV-2 infection/vaccination in humans and is applicable to other viral disease settings.


Subject(s)
B-Lymphocytes/immunology , COVID-19 , Influenza, Human , T Follicular Helper Cells/immunology , COVID-19/immunology , Humans , Influenza, Human/immunology
15.
J Leukoc Biol ; 111(2): 355-365, 2022 02.
Article in English | MEDLINE | ID: covidwho-1499281

ABSTRACT

Vaccination remains the most effective mechanism to reduce the impact of COVID-19. Induction of neutralizing antibodies is a strong correlate of protection from infection and severe disease. An understanding of the cellular events that underpin the generation of effective neutralizing antibodies is therefore key to the development of efficacious vaccines that target emerging variants of concern. Analysis of the immune response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and vaccination has identified circulating T follicular helper cells (cTFH ) as a robust correlate of the neutralizing antibody response. Here, we discuss the analysis of cTFH cells and their lymphoid counterparts in human humoral immune responses during COVID-19, and in response to vaccination with SARS-CoV-2 spike. We discuss the phenotypic heterogeneity of cTFH cells and the utility of cTFH subsets as informative biomarkers for development of humoral immunity. We posit that the analysis of the most effective cTFH will be critical to inducing durable immunity to new variants of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , Immunity, Cellular , Immunity, Humoral , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , Humans
16.
Biomedicines ; 9(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1350297

ABSTRACT

Vaccine efficacy is based on clinical data. Currently, the assessment of immune response after SARS-CoV-2 vaccination is scarce. A total of 52 healthcare workers were immunized with the same lot of BNT162b2 vaccine. The immunological response against the vaccine was tested using a T-specific assay based on the expression of CD25 and CD134 after stimulation with anti-N, -S, and -M specific peptides of SARS-CoV-2. Moreover, IgG anti-S2 and -RBD antibodies were detected using ELISA. Furthermore, the cell subsets involved in the response to the vaccine were measured in peripheral blood by flow cytometry. Humoral-specific responses against the vaccine were detected in 94% and 100% after the first and second doses, respectively. Therefore, anti-S T-specific responses were observed in 57% and 90% of the subjects after the first and second doses of the vaccine, respectively. Thirty days after the second dose, significant increases in T helper 1 memory cells (p < 0.001), peripheral memory T follicular helper (pTFH) cells (p < 0.032), and switched memory (p = 0.005) were observed. This study describes the specific humoral and cellular immune responses after vaccination with the new mRNA-based BNT162b2 vaccine. A mobilization of TFH into the circulation occurs, reflecting a specific activation of the immune system.

17.
Clin Transl Immunology ; 10(7): e1306, 2021.
Article in English | MEDLINE | ID: covidwho-1293156

ABSTRACT

OBJECTIVES: Humoral and cellular immunity to SARS-CoV-2 following COVID-19 will likely contribute to protection from reinfection or severe disease. It is therefore important to characterise the initiation and persistence of adaptive immunity to SARS-CoV-2 amidst the ongoing pandemic. METHODS: Here, we conducted a longitudinal study on hospitalised moderate and severe COVID-19 patients from the acute phase of disease into convalescence at 5 and 9 months post-symptom onset. Utilising flow cytometry, serological assays as well as B cell and T cell FluoroSpot assays, we assessed the magnitude and specificity of humoral and cellular immune responses during and after human SARS-CoV-2 infection. RESULTS: During acute COVID-19, we observed an increase in germinal centre activity, a substantial expansion of antibody-secreting cells and the generation of SARS-CoV-2-neutralising antibodies. Despite gradually decreasing antibody levels, we show persistent, neutralising antibody titres as well as robust specific memory B cell responses and polyfunctional T cell responses at 5 and 9 months after symptom onset in both moderate and severe COVID-19 patients. CONCLUSION: Our findings describe the initiation and, importantly, persistence of cellular and humoral SARS-CoV-2-specific immunological memory in hospitalised COVID-19 patients long after recovery, likely contributing towards protection against reinfection.

18.
Int J Mol Sci ; 21(18)2020 Sep 05.
Article in English | MEDLINE | ID: covidwho-1215392

ABSTRACT

The transcription factor T cell factor 1 (TCF1), a pioneer transcription factor as well as a downstream effector of WNT/ß-catenin signaling, is indispensable for T cell development in the thymus. Recent studies have highlighted the additional critical role of TCF1 in peripheral T cell responses to acute and chronic infections as well as cancer. Here, we review the regulatory functions of TCF1 in the differentiation of T follicular helper cells, memory T cells and recently described stem-like exhausted T cells, where TCF1 promotes less differentiated stem-like cell states by controlling common gene-regulatory networks. These studies also provide insights into the mechanisms of defective T cell responses in older individuals. We discuss alterations in TCF1 expression and related regulatory networks with age and their consequences for T cell responses to infections and vaccination. The increasing understanding of the pathways regulating TCF1 expression and function in aged T cells holds the promise of enabling the design of therapeutic interventions aiming at improving T cell responses in older individuals.


Subject(s)
Cell Differentiation/physiology , T Cell Transcription Factor 1/metabolism , T-Lymphocytes/metabolism , Aging/genetics , Aging/physiology , Animals , CD8-Positive T-Lymphocytes/immunology , Cellular Senescence/genetics , Cellular Senescence/physiology , Gene Expression Regulation/genetics , Hematopoiesis/physiology , Humans , Lymphocyte Activation/immunology , T Cell Transcription Factor 1/physiology , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt Signaling Pathway/physiology
19.
Food Chem Toxicol ; 152: 112184, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1176688

ABSTRACT

The innate immune cells play an important role in handling early infections, and can eliminate them completely up to a certain threshold. Beyond that threshold they take up their role in "The Resolution of Inflammation". The recognition of the SARS-CoV-2 antigen triggers an eicosanoid storm and initiates a robust inflammatory response. This establishes a positive feedback loop which develops into a sustained cytokine storm which interferes with the activation of adaptive immune cells. The mechanism of this interaction, and hence the pathogenesis of the virus with the immune system, is yet to be determined. In silico studies predict a direct SARS-CoV-2 spike glycoprotein interaction with nicotinic acetylcholine receptors, which could impair macrophage function and initiate the cascade of events in severe infections. We here, add to the hypothesis that immune dysregulation can be caused by the interaction of the SARS-CoV-2 spike glycoprotein via a cryptic epitope with the α7-nAChR in Type-1 macrophages, discuss its implications for the treatment of COVID-19 patients, and present better prospects for the design and dissemination of more effective vaccines and their importance.


Subject(s)
COVID-19/immunology , Macrophages/virology , Spike Glycoprotein, Coronavirus/immunology , alpha7 Nicotinic Acetylcholine Receptor/immunology , Epitopes , Humans
20.
Mol Immunol ; 134: 109-117, 2021 06.
Article in English | MEDLINE | ID: covidwho-1142153

ABSTRACT

Th17 cells are a lineage of CD4+ T helper cells with Th17-specific transcription factors RORγt and RoRα. Since its discovery in 2005, research on Th17 has been in rapid progress, and increasing cytokines or transcription factors have been uncovered in the activation and differentiation of Th17 cells. Furthermore, growing evidence proves there are two different subsets of Th17 cells, namely non-pathogenic Th17 (non-pTh17) and pathogenic Th17 (pTh17), both of which play important roles in adaptive immunity, especially in host defenses, autoimmune diseases, and cancer. In this review, we summarize and discuss the mechanisms of Th17 cells differentiation, and their roles in immunity and diseases.


Subject(s)
Cell Differentiation/immunology , Th17 Cells/immunology , Humans , Yin-Yang
SELECTION OF CITATIONS
SEARCH DETAIL